



U.S. Department of Transportation

# COMPETENT AUTHORITY CERTIFICATION FOR A TYPE B(U)F FISSILE

RADIOACTIVE MATERIALS PACKAGE DESIGN CERTIFICATE USA/0208/B(U)F-96, REVISION 13

Pipeline and Hazardous Materials Safety Administration

## REVALIDATION OF JAPANESE COMPETENT AUTHORITY CERTIFICATE J/61/B(U)F-96

The Competent Authority of the United States certifies that the radioactive material package design described in this certificate satisfies the regulatory requirements for a Type B(U)F package as prescribed in the regulations of the International Atomic Energy Agency<sup>1</sup> and the United States of America<sup>2</sup>.

- 1. Package Identification JRC-80Y-20T.
- Package Description and Authorized Radioactive Contents as described in Japanese Certificate of Competent Authority J/61/B(U)F-96, Revision 3 (attached).
- 3. <u>Criticality</u> The minimum criticality safety index is 0.0. The maximum number of packages per conveyance is determined in accordance with Table 11 of the IAEA regulations cited in this certificate.

### 4. General Conditions -

a. Each user of this certificate must have in his possession a copy of this certificate and all documents necessary to properly prepare the package for transportation. The user shall prepare the package for shipment in accordance with the documentation and applicable regulations.

b. Each user of this certificate, other than the original petitioner, shall register his identity in writing to the Office of Engineering and Research, (PHH-23), Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, Washington D.C. 20590-0001.

 $^{1}$  "Regulations for the Safe Transport of Radioactive Material, 2012 Edition, No. SSR-6" published by the International Atomic Energy Agency (IAEA), Vienna, Austria.

 $<sup>^2</sup>$  Title 49, Code of Federal Regulations, Parts 100-199, United States of America.

### CERTIFICATE USA/0208/B(U)F-96, REVISION 13

- c. This certificate does not relieve any consignor or carrier from compliance with any requirement of the Government of any country through or into which the package is to be transported.
- d. This certificate provides no relief from the limitations for transportation of plutonium by air in the United States as cited in the regulations of the U.S. Nuclear Regulatory Commission 10 CFR 71.88.
- e. Records of Management System activities required by Paragraph 306 of the IAEA regulations<sup>1</sup> shall be maintained and made available to the authorized officials for at least three years after the last shipment authorized by this certificate. Consignors in the United States exporting shipments under this certificate shall satisfy the applicable requirements of Subpart H of 10 CFR 71.
- 5. Special Conditions Package is not authorized for transport by air.
- 6. Marking and Labeling The package shall bear the marking USA/0208/B(U)F-96 in addition to other required markings and labeling.
- 7. Expiration Date This certificate expires on May 28, 2022.

This certificate is issued in accordance with paragraph(s) 810 and 816 of the IAEA Regulations and Section 173.472 and 173.473 of Title 49 of the Code of Federal Regulations, in response to the July 11, 2018 petition by Edlow International Company, Washington, DC, and in consideration of other information on file in this Office.

Certified By:

William Schoonover

Associate Administrator for Hazardous

Materials Safety

August 16, 2019 (DATE)

Revision 13 - Issued to revalidate Japanese Certificate of Approval No. J/61/B(U)F-96, Revision 3, dated October 10, 2017.



# IDENTIFICATION MARK J/61/B(U)F-96(Rev.3)

# COMPETENT AUTHORITY OF JAPAN

CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

**ISSUED BY** 

NUCLEAR REGULATION AUTHORITY 1-9-9, ROPPONGI MINATO-KU TOKYO, JAPAN



# CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

This is to certify, in response to the application by Japan Atomic Energy Agency, that the package design described herein complies with the design requirements for a package containing spent fuel elements, specified in the 2012 Edition of the Regulations for the Safe Transport of Radioactive Materials (International Atomic Energy Agency, Safety Standards Series No.SSR-6) and the Japanese rules based on the Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors.

This certificate does not relieve the consignor from compliance with any requirement of the government of any country through or into which the package will be transported.

COMPETENT AUTHORITY

IDENTIFICATION MARK: J/61/B(U)F-96(Rev.3)

Oct. 10, 2017

Date

Kazuya Aoki

Director, Division of Licensing for Nuclear Fuel Facilities

Secretariat of Nuclear Regulation Authority Competent Authority of JAPAN for Package Design Approval

### Reference of J/61/B(U)F-96(Rev.3) Page 2 of 6 Pages

1. The Competent Authority Identification Mark

: J/61/B(U)F-96(Rev. 3)

2. Name of Package

: Type JRC-80Y-20T

3. Type of Package

: Type B(U) package for fissile material

4. Specification of Package

(1) Material of Packaging

(i) Body & Lid

: Stainless steel

(ii)Basket

: Stainless steel, Boron Carbide

(iii) Fin(Heat dissipation and shock absorbing)

: Stainless steel

: Approximately

 $22.8 \times 10^3 \text{ kg}$ 

(2) Total Weight of Packaging (3) Outer Dimensions of Packaging

(i) Outer Diameter

: Approximately

1.9 m

(ii) Height

: Approximately

 $2.1 \, \mathrm{m}$ 

(4) Total Weight of Package

: Approximately

 $23.2 \times 10^3 \text{ kg or less}$ 

(5) Illustration of Package

: See the attached Figure-1(Bird's-eye view)

5. Specification of Radioactive Contents

: See the attached Table-1

6. Description of Containment System

Containment system consists of body, lid, vent valve, and drain valve made of stainless steel.

Silicone rubber is used for contact surface of the lid, the valves, and valve seat.

### 7. For Package containing Fissile Materials

(1) Restrictions on Package

(i) Restriction Number "N"

: No restriction

(ii) Array of package

: No restriction

(iii) Criticality Safety Index (CSI)

:0

(2) Description of Confinement System

Confinement system consists of the basket which maintains the fuel elements contained in the package.

(3) Assumptions of Leakage of Water into Package

The subcriticality calculation is evaluated upon the assumption that internal void spaces of the package are filled with water, not only during routine transport but also under both normal and accident conditions.

(4) Special Features in Criticality Assessment

Any special features are not considered in the criticality assessment.

For Type B(M) Packages, a statement regarding prescriptions of Type B(U) Package that do not apply to this Package Not applicable. (This package is Type B(U).)

### 9. Assumed Ambient Conditions

(i) Ambient Temperature Range

:-40℃~38℃

(ii) Insolation Data

: Table 12 of IAEA Regulation

### 10. Handling, Inspection and Maintenance

### (1) Handling Instructions

- ( i ) Package should be handled carefully in accordance with the schedule and procedures established properly taking all possible safety measures.
- (ii) Package should be handled using appropriate lifting devices and the crane.
- (iii) When packaging is stored outdoors, it should be covered with an appropriate waterproof sheet, avoiding the situation where it is placed directly on the ground.

### (2) Inspections and Maintenance of Packaging

The following inspections should be performed not less than once a year (once for every ten times in a case where the packaging is used not less than ten times a year) and defect of packaging should be repaired, if any, in order to maintain the integrity of packaging.

(i) Visual Inspection

(ii) Leakage Rate Measurement Inspection

(iii) Lifting Inspection

(iv) Subcriticality Inspection

( v ) Heat Transfer Inspection

(vi) Shielding Inspection

### (3) Actions prior to Shipment

The following inspections should be performed prior to shipment.

(i) Visual Inspection

(ii) Lifting Inspection

(iii) Weight Measurement Inspection

(iv) Surface Contamination Measurement Inspection

(v) Dose Rate Measurement Inspection

(vi) Subcriticality Inspection

(vii) Contents Inspection

(viii) Surface Temperature Measurement Inspection

(ix) Leakage Rate Measurement Inspection

(x) Package Internal Pressure Measurement Inspection

### (4) Precautions for Loading of Package for Shipment

Package should be securely loaded to the conveyance at the designated tie-down portion of the packaging so as not to move, roll down or fall down from the loading position during transport.

### 11. Issue Date and Expiry Date

(i) Issue Date

: May.29, 2017

(ii) Expiry Date

: May.28, 2022

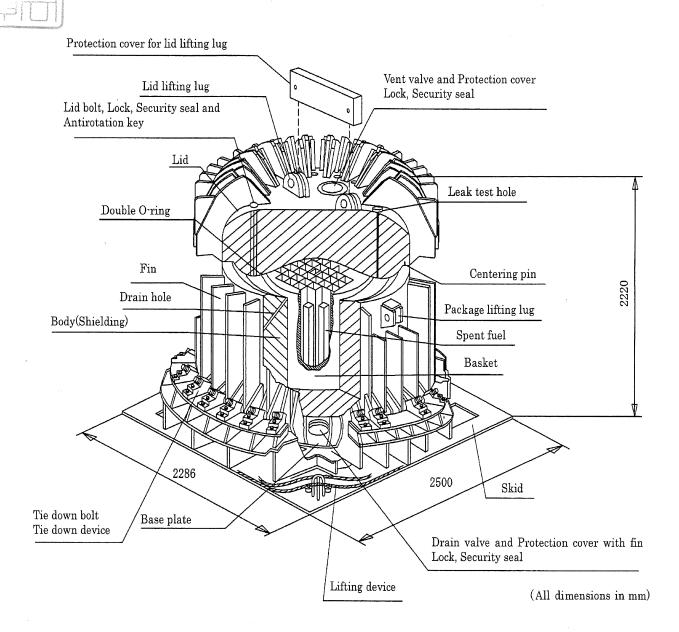



Figure-1 Illustration of JRC-80Y-20T Package

# Specification of Radioactive Contents (1/2) Table-1

| Basket                                                 |                                             | Box                                                  | Box type                                             |                                               | Box type(with Adapters)                     | th Adapters)                                         | MNU type                      |
|--------------------------------------------------------|---------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------------|-------------------------------|
| Classifi Reactor                                       | JRR-3                                       | JRR-3                                                | JRR-4                                                | JRR-4                                         | JRR-3                                       | JRR-3                                                | JRR-3                         |
| -cation Fuel element Item                              | Standard aluminide<br>type                  | Standard silicide<br>type                            | Low enrichment silicide type                         | High enrichment<br>Instrumented type<br>(HEU) | Follower aluminide<br>type                  | Follower silicide<br>type                            | MNU type                      |
| Fuel type                                              | Plate fuel                                  | Plate fuel                                           | Plate fuel                                           | Plate fuel                                    | Plate fuel                                  | Plate fuel                                           | Rod fuel                      |
| Number of fuel elements<br>(piece)                     | 40 or less                                  | 40 or less                                           | 40 or less                                           | 40 or less                                    | 40 or less                                  | 40 or less                                           | 160 or less                   |
| Initial enrichment $(9,0)^{1}$                         | 20 or less                                  | 20 or less                                           | 20 or less                                           | 93 or less                                    | 20 or less                                  | 20 or less                                           | 0.72                          |
| Total mass of <sup>235</sup> U (g/piece) <sup>1)</sup> | 306 or less                                 | 485 or less                                          | 210 or less                                          | 168 or less                                   | 194 or less                                 | 310 or less                                          | 61.2 or less                  |
| Total mass of U (g/piece) 1)                           | 1,530 or less                               | 2,481 or less                                        | 1,075 or less                                        | 186 or less                                   | 970 or less                                 | 1,586 or less                                        | 8,500 or less                 |
| Burnup $(\%)^{2}$                                      | 50 or less                                  | 60 or less                                           | 50 or less                                           | 15 or less                                    | 50 or less                                  | 60 or less                                           | 23 or less                    |
| Cooling time<br>(day)                                  | 300 or more <sup>3)</sup>                   | 600 or more                                          | 110 or more                                          | 10,000 or more                                | 300 or more <sup>3)</sup>                   | 600 or more                                          | 2,190 or more                 |
| Total activity<br>(Bq/package)                         | $2.04 \times 10^{16}$ or less <sup>4)</sup> | $2.09 \times 10^{16}$ or less                        | $2.02 \times 10^{16}$ or less                        | $1.98 \times 10^{14}$ or less                 | 9.53×10 <sup>15</sup> or less <sup>4)</sup> | 1.33×10 <sup>16</sup> or less                        | 9.33×10 <sup>14</sup> or less |
| Decay heat<br>(W/package)                              | $2.25 \times 10^3$ or less <sup>4)</sup>    | $2.24 \times 10^3$ or less                           | $2.15 \times 10^3$ or less                           | $1.69 \times 10^{1}$ or less                  | $1.03\times10^3$ or less <sup>4)</sup>      | $1.43\times10^3$ or less                             | 7.24×10¹ or less              |
| Fuel meat                                              | Uranium aluminum dispersion type alloy      | Uranium silicon<br>aluminum<br>dispersion type alloy | Uranium silicon<br>aluminum<br>dispersion type alloy | Uranium aluminum<br>alloy                     | Uranium aluminum<br>dispersion type alloy   | Uranium silicon<br>aluminum<br>dispersion type alloy | Metallic natural<br>uranium   |
| material Clad                                          | Aluminum alloy                              | Aluminum alloy                                       | Aluminum alloy                                       | Aluminum alloy                                | Aluminum alloy                              | Aluminum alloy                                       | Aluminum alloy                |
| Side plate,<br>etc.                                    | Aluminum alloy                              | Aluminum alloy                                       | Aluminum alloy                                       | Aluminum alloy                                | Aluminum alloy                              | Aluminum alloy                                       |                               |
| Dimension at contained width×height×length (mm)        | 77.04×77.04×800                             | 77.04×77.04×800                                      | 80×80×660                                            | 80×80×840                                     | 63.6×63.6×880                               | 63.6×63.6×880                                        | φ37×933<br>and<br>φ37×944     |
| Weight at contained (kg/piece)                         | 8.0 or less                                 | 8.0 or less                                          | 5.6 or less                                          | 6.0 or less                                   | 5.2 or less                                 | 5.2 or less                                          | 10 or less                    |

Note. The fuel elements of JRR-3 and JRR-4 can be contained together (except MNU type fuel elements).

1) The value in the nuclear specification shows an upper value which contains fabrication tolerance.
2) Burn up (%) = ((All depletion weight of <sup>235</sup>U) ÷ (Initial weight of <sup>235</sup>U) × 100
3) One operation cycle of JRR-3 with JRR-3 aluminide fuels (standard type and follower type) is 35 days for reactor operation and 8 days for shutdown). Refueling work is carried out once in an operation cycle, and 4 standard type fuels and 2 follower type fuels are refueled in an operation cycle. Therefore, cooling time of fuels contained in the package are at a minimum of 300 days, and added 35 days in turn for every 4 standard type fuels and 2 follower type fuels. (Standard type fuel: 300 days or more (4 fuels), ..., 615 days or more (2 fuels), ..., 965 days or more (3 fuels), ..., 965 days or mo

# Table-1 Specification of Radioactive Contents (2/2)

|                                            | -       |                                                |                                                         |                                     | 7                            |                              |                             |                                                          |
|--------------------------------------------|---------|------------------------------------------------|---------------------------------------------------------|-------------------------------------|------------------------------|------------------------------|-----------------------------|----------------------------------------------------------|
| Box type Box type (with Adapters) MNU type | JRR-3   | MNU type                                       | Activity<br>(Bq)                                        | 1.79×10 <sup>14</sup>               | Pm-147 1.57×10 <sup>14</sup> | 1.53×10 <sup>14</sup>        | 1.53×10 <sup>14</sup>       | 2.24×10 <sup>13</sup>                                    |
|                                            |         |                                                | Nuclide                                                 | Cs-137                              | Pm-147                       | Sr-90                        | 06- X                       |                                                          |
|                                            | JRR-3   | Follower silicide type                         | Activity (Bq)                                           | 3.84×10 <sup>15</sup>               | 1.17×10 <sup>15</sup>        | 6.98×10 <sup>14</sup>        | 6.76×10 <sup>14</sup> Y -90 | 6.76×10 <sup>14</sup> Ce-144                             |
|                                            |         |                                                | Nuclide                                                 | Ce-144                              | Pm-147                       | Cs-137                       | Sr-90                       | V -90                                                    |
|                                            | JRR-3   | Follower aluminide<br>type                     | Activity<br>(Bq)                                        | $2.77 \times 10^{15}$               | Pm-147 7.81×10 <sup>14</sup> | 4.40×10 <sup>14</sup> Cs-137 | 3.85×10 <sup>14</sup>       | 3.76×10 <sup>14</sup> Y -90                              |
|                                            |         |                                                | Nuclide                                                 | Ce-144                              | Pm-147                       | Nb-95                        | Cs-137                      | Sr-90                                                    |
|                                            | JRR-4   | High enrichment<br>Instrumented type<br>(H EU) | Activity<br>(Bq)                                        | $5.02 \times 10^{13}$               | 4.81×10 <sup>13</sup>        | $4.81 \times 10^{13}$        | $2.46 \times 10^{12}$       | $1.51 \times 10^{15}$ Pm-147 $2.51 \times 10^{11}$ Sr-90 |
|                                            |         |                                                | Nuclide                                                 | Cs-137                              | Sr-90                        | V-90                         | Kr-85                       | Pm-147                                                   |
|                                            | JRR-4   | Low enrichment silicide type                   | Activity<br>(Bq)                                        | $3.54 \times 10^{15}$               | $2.38 \times 10^{15}$        | 2.31×10 <sup>15</sup> Y -90  | $2.03 \times 10^{15}$       | 1.51×10 <sup>15</sup>                                    |
|                                            |         |                                                | Nuclide                                                 | Nb-95                               | Ce-144                       | Zr-95                        | Y -91                       | Sr-89                                                    |
|                                            | JRR-3   | Standard silicide type                         | Activity<br>(Bq)                                        | $6.01 \times 10^{15}$               | 1.84×10 <sup>15</sup>        | $1.10 \times 10^{15}$        | $1.06 \times 10^{15}$       | 1.06×10 <sup>15</sup> Sr-89                              |
|                                            | JR      | Standard                                       | Nuclide                                                 | Ce-144                              | Pm-147                       | Cs-137                       | Sr-90                       | Y -90                                                    |
|                                            | JRR-3   | Standard aluminide<br>type                     | Activity<br>(Bq)                                        | Ce-144 6.12×10 <sup>15</sup> Ce-144 | 1.39×10 <sup>15</sup>        | 1.36×10 <sup>15</sup> Cs-137 | 6.41×10 <sup>14</sup> Sr-90 | $6.14 \times 10^{14} \mid Y - 90$                        |
|                                            |         |                                                | Nuclide                                                 | Ce-144                              | Pm-147                       | Nb-95                        | Zr-95                       | Cs-137                                                   |
| Basket                                     | Reactor | Fuel                                           | Quantities of major<br>radionuclides<br>( per package ) |                                     |                              |                              |                             |                                                          |
| Classifi                                   | Canon   | Item                                           | Quantities<br>radionu<br>( per pa                       |                                     |                              |                              |                             |                                                          |



# U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

CERTIFICATE NUMBER: USA/0208/B(U)F-96

### ORIGINAL REGISTRANT(S):

Edlow International Company 1666 Connecticut Ave, N.W Suite 201 Washington, DC, 20009 USA

Transport Logistics International (DAHER - TLI) 8161 Maple Lawn Boulevard Suite 480 Fulton, MD, 20759 USA

Secured Transportation Services 5210 Palmero Court Suite 107 Buford, GA, 30518 USA

Japan Atomic Energy Agency 2-4 Shirane Shirakata Tokai-mura Naka-gun, Ibaraki, 319-1195 Japan

TN Americas LLC 7135 Minstrel Way, Suite 300 Columbia, MD, 21045 USA