Sealed Source Disposal and National Security:
Recommendations and Messaging Strategy

Deliverable (Part 2) of the Removal and Disposition of Disused Sources Focus Group of the Radioisotopes Subcouncil of the Nuclear Government and Sector Coordinating Councils

June 30, 2010
(This page intentionally left blank)
Table of Contents

I. Introduction ...1
II. Down-Selection...2
III. Recommendations...4
IV. Conclusion..8
Appendix A: Focus Group Participant List ..9
Appendix B: Sealed Source Disposal and National Security: Problem Statement and Solution Set13
I. Introduction

In September 2008, the Department of Homeland Security (DHS), under the auspices of the Nuclear Critical Infrastructure Partnership Advisory Council (CIPAC), facilitated a public and private sector Sealed Source Security Workshop. Workshop participants, including Federal, State, local, and private sector stakeholders, identified the lack of a commercial disposal pathway for disused radioactive sealed sources, a subset of Low-Level Radioactive Waste (LLRW), as a national security concern.

Removal and Disposition of Disused Sources—Problem Statement

The lack of disposal pathways for radioactive sealed sources, which make up less than 1% of all low-level radioactive waste by volume and activity, poses a national security concern. During their service lives, these sources have numerous essential and beneficial medical, industrial, and research applications. However, due to their high activity and portability, some of these sources could be used either individually or in aggregate in radiological dispersal devices commonly referred to as “dirty bombs,” resulting in economic impacts in the billions of dollars and significant social disruption. Every year, thousands of sources become disused and unwanted in the United States. While secure storage is a temporary measure, the longer sources remain disused or unwanted the chances increase that they will become unsecured or abandoned. Thus, permanent disposal is essential. However, only 14 States currently have commercial LLRW sealed source disposal access, and there are significant political, statutory, and regulatory challenges associated with the creation of commercial disposal access for the remaining 36 States.

1. Removal and Disposition of Disused Sources—Disposal Challenges

- Lack of disposal capability for high-activity beta/gamma sources (primarily cobalt-60, cesium-137, and strontium-90)
- Thirty-six states do not have disposal access for lower-activity beta/gamma sources.
- Lack of near-term disposal capability for sealed sources using foreign-origin americium-241

In response to this concern, the Nuclear Government Coordinating Council (NGCC) and Nuclear Sector Coordinating Council (NSCC) created the Removal and Disposition of Disused Sources Focus Group (“Focus Group”) in February of 2009 within the CIPAC framework. The Focus Group includes members of the NSCC and NGCC, as well as subject matter experts (SMEs) from across the radioactive sealed source stakeholder community, including manufacturers, distributors, users, storage and disposal companies, regulators, other Federal and State officials, and LLRW compact members. Focus Group members are listed in Appendix A to this document.

The overall objective of the public and private sector collaboration in the Focus Group is to fully characterize the sealed source disposal challenge, develop a consensus problem statement, investigate and recommend immediate and long-term options, and recommend to the NSCC and NGCC a messaging strategy for communicating with the appropriate stakeholders to implement a solution. The Focus Group met the first part of its objective in December 2009 with the publication of Sealed Source Disposal and National Security: Problem Statement and Solution Set (“Part 1 Deliverable”).

It includes a consensus view of the scope and character of the challenge, a consensus problem statement, and a consensus determination of options from which specific solutions can be further explored and identified. It is included as Appendix B to

this document. The Focus Group continued its work in 2010 to accomplish the second part of the deliverable— recommended solutions to the problem and a messaging strategy. This paper represents that deliverable.

It is important to note that the members of the Focus Group make their recommendations as individual subject matter experts, and do not represent the official positions of their agencies, States, or companies. Particularly because some of the potential solutions and recommendations contained in the Focus Group deliverables may require executive or legislative action, it is important to emphasize that the opinions and conclusions embodied here are those of the individuals only, and not their organizations. While each Focus Group member may not agree with everything in this document, it represents the general consensus of the Focus Group.

II. Down-Selection

The Focus Group’s Part 1 Deliverable described 16 potential solutions, referred to as disposal/management alternatives, to the sealed source disposal problem. The solution set included both permanent disposition alternatives and temporary alternatives such as secure storage and recycle. The list was compiled with the intention of ensuring that a wide range of potential solutions would be considered in making specific recommendations in Part 2 of the deliverable.

The Focus Group determined at the beginning of the Part 2 process to exclude non-permanent solutions, such as storage and recycle (identified as alternatives 5, 9, 10, and 11 in the Part 1 Deliverable). While these temporary solutions are critical to sealed source management, they do not fulfill the ultimate objective of permanent disposition. Secure storage, either at the licensee site or commercial storage locations, is essential until permanent disposition options can be identified or created. Recycle of sealed sources in some circumstances is both economically and technologically viable. Increased efforts to find recycle options for disused sealed sources helps mitigate the overall risk of the lack of disposition options.

The criteria used by the Focus Group to down-select recommendations from the remaining twelve options are described in Table 1. However, two criteria were judged to be particularly important: feasibility and burden-sharing. In judging the options, the Focus Group avoided solutions with impediments to implementation perceived to be so great as to make implementation highly unlikely. As the ultimate purpose of the Focus Group is to provide recommendations that will improve the security of sealed sources, the Focus Group determined that time to implementation, or feasibility, was a key criterion.

The Focus Group also weighed negatively options that are likely to place the entire burden on one stakeholder. Radioactive sealed source disposal is likely to generate at least some public opposition in the geographical area of disposition or with the stakeholders who take permanent custody of the sources. The Focus Group concluded that burden-sharing would make an option more feasible. That is, stakeholders are more likely to accept part of the burden for disposition of sealed sources if other stakeholders are accepting a similar burden. There were some instances in which feasibility and burden-sharing were at odds with each other. The Focus Group did its best to evaluate those instances carefully to come to a conclusion.

Finally, the Focus Group recognized that the ultimate solutions to the sealed source disposal challenge may necessitate Congressional attention if solutions cannot be found within the current legal framework. In 1980, following a recommendation from the National Governors’ Association, Congress enacted the Low-Level Radioactive Waste Policy Act (LLRWPA) to deal with a looming shortage of disposal capacity for LLRW throughout the country. Congress subsequently amended the LLRWPA.
through the passage of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPA)\(^3\).

Among other things, this state-endorsed, state-oriented policy gives to States the responsibility to provide for the disposal of Class A, B, and C low-level radioactive waste generated within their borders, or within borders defined by multi-state “regional compacts.” The LLRWPA assigns the Federal Government responsibility for disposal of “greater-than-class C” (GTCC) low-level radioactive waste.

The LLRWPA contained three provisions, including both positive and negative incentives, to encourage States or regional compacts to create additional disposal capacity.\(^5\) From 1986 through 1992, the three regional compacts with sited disposal facilities—the Southeast Compact, the Northwest Compact, and the Rocky Mountain Compact—applied the surcharge and access restriction incentives authorized by LLRWPA according to the milestones specified in the legislation to encourage creation of additional disposal capacity.\(^5\) During this time, in 1988, a

Table 1. Criteria for Down-Selections of Options

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Degree to which the solution is comprehensive</td>
</tr>
<tr>
<td>2</td>
<td>Permanence of the solution</td>
</tr>
<tr>
<td>3</td>
<td>Cost and cost allocation of the solution</td>
</tr>
<tr>
<td>4</td>
<td>Extent of likely public/political acceptance of the solution</td>
</tr>
<tr>
<td>5</td>
<td>Burden-sharing</td>
</tr>
<tr>
<td>6</td>
<td>Feasibility/speed of implementation</td>
</tr>
<tr>
<td>7</td>
<td>Federal and state legislative challenges to implementation of the solution</td>
</tr>
<tr>
<td>8</td>
<td>Regulatory challenges to implementation of the solution</td>
</tr>
<tr>
<td>9</td>
<td>Acceptance by regional compacts/States of the solution</td>
</tr>
</tbody>
</table>

\(^4\) LLRWPA at § 4(d)(1).

facility in Clive, Utah began operations. By 1991, 7 out of 10 of the regional compacts had met the first three of the five milestones for developing new disposal facilities, having filed a complete license application or having received a gubernatorial certification that the state or regional compact would provide for the disposal of its waste.

In June 1992, the United States Supreme Court struck down the third incentive, the LLRWPAA’s “take-title” provision, which was due to take effect on January 1, 1993. Subsequently, on September 16, 1993, the California Department of Health Services (CDHS) issued a license for a disposal facility at Ward Valley, conditioned on CDHS ownership of the land. Due to the federal government’s refusal to transfer the land, however, the license became moot. Thereafter, efforts by states and compacts to site new LLRW disposal facilities stalled due to a variety of factors—including, among other things, advances in processing techniques which resulted in declining waste volumes, as well as significant public opposition and political pressures. Today, the Texas Compact is the only one that is currently actively engaged in siting a new LLRW disposal facility, with the Texas Commission on Environmental Quality (TCEQ) having issued a final license to Waste Control Specialists LLC (WCS) on September 10, 2009—including certain pre-construction requirements. WCS plans to begin construction on the facility in late 2010, with operations projected to begin in 2011.

None of the 12 permanent disposition options in the Focus Group’s Part 1 Deliverable could be fully implemented by a single entity. Each of the disposal options in the original proposed solution set could only be implemented through a series of actions involving decision makers at several levels of government and/or the private sector. This devolution of authority is one of the characteristics that makes the sealed source disposition challenge so problematic to address, and which makes a messaging strategy which speaks to all appropriate partners so important.

III. Recommendations

The following tables include the Focus Group’s five recommendations to address the three disposal challenges identified in the RDDS Focus Group Part 1 Deliverable. The results of the down selection process are summarized in Tables 2 and 3 below. These recommendations are intended to inform future activities to address the lack of disposition options for the entire range of disused sealed sources and represent a reasoned down-selection from the larger set of options presented to the NSCC and NGCC in the Part 1 document. It should be noted that an ideal national solution would be comprised of several of these recommendations rather than a single one.

If significant progress has not been made on these recommendations within a reasonable timeframe, i.e., 3 years, then the Focus Group recommends considering potential legislative changes to promote the establishment of disposal facilities for Class A, B, and C sources. Pursuit of this option would be very challenging and would require significant consensus building among stakeholders. Similar options have been raised in previous government reports, for example, GAO 04-604, Low-Level Radioactive Waste: Disposal Availability Adequate in the Short Term, but Oversight Needed to Identify Any Future Shortfalls and the 2006 Radiation Source Protection and Security Task Force Reports.

6. The Clive facility, which is operated by EnergySolutions, currently accepts both federal and out-of-region Class A commercial low-level radioactive waste, NARM and exempt waste.
9. The license allows WCS to operate two separate facilities in Andrews County, Texas for the disposal of Class A, B and C low-level radioactive waste—one being for the Texas Compact (which is comprised of the States of Texas and Vermont) and the other being for waste designated as a federal responsibility under section 3(b)(1)(A) of the LLRWPA.
Table 2. Recommended Disposal Solutions

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Primary Reasons for Recommendation</th>
</tr>
</thead>
</table>
| A | Support ongoing DOE efforts to develop a disposal capability for GTCC LLRW
Complete solution for Disposal Challenge 3 and most of Disposal Challenge 1; Provides a permanent disposition path for majority of the highest risk sources |
| B | Concentration averaging of sealed sources for disposal at existing commercial facilities
Partial Solution for Disposal Challenge 1; Can be done within existing legislative/regulatory frame; timely |
| C | Case by case exemption by existing compacts for disposal of discrete numbers of high-risk sealed sources
Partial Solution for Disposal Challenge 1 and 2; Potential timely solution for addressing high-risk Class A, B, and C sources |
| D | Physical destruction of Class A sources for disposal as Class A LLRW
Partial Solution for Disposal Challenge 2; Can be done within existing legislative/regulatory frame; timely |
| E | Co-disposal of foreign-origin americium-241, plutonium-238 and plutonium-239 sources with domestic sources
Near-Term Solution for Disposal Challenge 3; Potential timely, near-term solution until a GTCC disposal facility is operational |

Table 3. Options Not Currently Recommended

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Primary Reasons for Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay-in-storage for short-life sealed sources</td>
<td>Lacks comprehensiveness and/or permanence</td>
</tr>
<tr>
<td>Encourage/expand sealed source recycling programs</td>
<td></td>
</tr>
<tr>
<td>Develop Federal/State/Compact Consolidated Storage Facility</td>
<td></td>
</tr>
<tr>
<td>Develop/expand commercial consolidated storage facility</td>
<td></td>
</tr>
<tr>
<td>Concentration averaging to allow management as GTCC waste by DOE</td>
<td></td>
</tr>
<tr>
<td>Targeted emergency disposal access per NRC authorization</td>
<td></td>
</tr>
</tbody>
</table>
| Commercial, for-profit Class A, B, and C disposal facility with DOE GTCC Facility
New Federal disposal facility exclusively for all radioactive sealed sources, including Class A, B, C, and GTCC | Not timely and requires legislative and/or regulatory changes |
| New “full service” commercial disposal facility developed outside of the compact restrictions | Unlikely to be accepted by States/Compacts; not timely, and requires legislative and/or regulatory changes |
| Utilize EPA regulated hazardous waste disposal facilities under Resource Conservation and Recovery Act | Lacks comprehensiveness; not timely; requires legislation and/or regulatory changes |
| Remove legal/regulatory restrictions that apply to currently operating commercial disposal sites | Requires legislative and/or regulatory changes |
| Open currently operating DOE LLRW disposal facilities for commercial LLRW | |
Sealed Source Disposal and National Security – Recommendations and Messaging Strategy

Disposal Challenge 1 – Lack of disposal for high-activity beta/gamma sources (primarily cobalt-60, cesium-137, and strontium-90) in wide use primarily in medical and industrial irradiation and power generation applications. Commercial disposal facilities have activity limits below those found in many of these types of devices, even when the sources are not GTCC. The Focus Group identified two recommended solutions for Disposal Challenge 1.

Recommendation A

Support ongoing DOE efforts to develop a disposal capability for GTCC LLRW. (This recommendation will also address Disposal Challenge 3 – disposal of sources using foreign-origin americium-241). DOE expects to issue a Draft Environmental Impact Statement in 2010, which evaluates disposal alternatives for GTCC LLRW, including sealed sources containing high concentrations of short-lived radionuclides (e.g., cesium-137 high-activity beta gamma sources) and long-lived radionuclides (e.g., americium-241 sources). The draft EIS will support the development of a disposal capability for the most hazardous sources (i.e., International Atomic Energy Agency Category 1 and 2 sources), with the notable exception of cobalt-60 sources, which are classified as either Class A or B LLRW when sent for disposal and are therefore addressed under Recommendation C. DOE anticipates that a GTCC disposal facility would be operational in the 2015-2019 timeframe; some alternatives may also require legislation. Until a GTCC facility is operational, the National Nuclear Security Administration’s (NNSA) Global Threat Reduction Initiative/Offsite Source Recovery Project (GTRI/OSRP) will continue to recover unwanted or excess sealed sources that present a national security or public health and safety risk, consistent with GTRI’s recovery criteria and budgetary constraints. The solution would have to be supplemented by a disposal option for Class A, B, and C sources (particularly for high-activity cobalt-60 sources) and interim storage.

Steps Towards Implementation

1. DOE completes and issues draft EIS for public review and comment;
2. DOE issues final EIS and submits a Report to Congress describing disposal alternatives;
3. DOE awaits Congressional action;
4. Following Congressional action, DOE initiates implementation of the disposal alternative, including additional NEPA analyses as necessary;
5. After obtaining requisite licenses and permits from applicable regulatory agencies, DOE initiates construction and operation of the disposal facility, depending upon the alternative selection in the GTCC EIS;
6. Host state facilitates development of site and regulatory framework;
7. DOE opens site to GTCC LLRW.

Messaging Strategy

Stakeholders support DOE efforts toward development of future GTCC facility as a solution to national security concerns presented by the current lack of a disposal path for GTCC waste.

Recommendation B

Concentration averaging of sealed sources for disposal at existing commercial facilities. The Branch Technical Position (BTP) allows the concentration of a radionuclide to be averaged over the volume of the waste, or weight of the waste and not limited to 30 Ci per 55 gallon drum. This creates the potential for higher activity sealed sources to be disposed of at existing commercial disposal facilities.

Steps Towards Implementation

1. NRC revisit its Branch Technical Position paper to clarify or create a process for using a larger-than-55-gallon volume for averaging;
2. Individual disposal facilities work with State regulators to develop activity limits based on the unique characteristics of their site.

Messaging Strategy

Stakeholders reach out to NRC and host States and Compacts to discuss Steps 1 and 2.
Disposal Challenge 2 – Lower-activity beta/gamma sealed sources in the 36 states without disposal access. These sources are used in a wide variety of medical and industrial applications. The Focus Group identified two recommendations to address this challenge.

<table>
<thead>
<tr>
<th>Recommendation C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case by case exemption by existing compacts for disposal of discrete numbers of high-risk sealed sources. Regional Compacts that currently have disposal access have the right under the LLRWPA to exclude or allow non-compact waste. These compacts currently exclude non-compact waste, but may be able to allow a specific waste stream such as sealed sources. This option could address Class A, B, and C sealed sources up to the site curie limits established by the current compacts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steps Towards Implementation</th>
<th>Messaging Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generators or State Government representatives appeal to compact commissions and host state requesting out-of-compact exemptions for specific set of disused sources;</td>
<td>Stakeholders work with compacts and states to determine what process is in place for following up with requests by out-of-compact generators and how stakeholders can help Compacts engage host states in considering exemptions for sealed sources in the interest of national security separately from other exemption requests.</td>
</tr>
<tr>
<td>2. Compact commissions and states consider request in light of national security concerns;</td>
<td></td>
</tr>
<tr>
<td>3. If there are no compact by-law or state law restrictions, compact makes determination on whether or not to accept sources for disposal;</td>
<td></td>
</tr>
<tr>
<td>4. If there are compact or state laws prohibiting acceptance of these sources, compacts raise the exemption request, national security considerations, and impact of accepting set of sources on in-compact generators to host state government.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical destruction of Class A sources for disposal as Class A LLRW. Some licensees are already engaging in physical destruction of Class A sealed sources on a very limited basis for disposal as Class A LLRW. (The existing facility which accepts Class A LLRW from generators in all states does not currently accept sealed source waste.) Encouraging this practice could represent an immediate disposition solution for a large number of Class A sealed sources.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steps Towards Implementation</th>
<th>Messaging Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NRC and agreement states consider expanded physical destruction of sources and whether or not generic guidance is needed.</td>
<td>Stakeholders engage the NRC on physical destruction guidance.</td>
</tr>
</tbody>
</table>

Because disused sealed sources containing foreign-origin americium and plutonium are classified as GTCC LLRW, this disposal challenge will be fully met by implementation of Recommendation A. Until a GTCC LLRW disposal capability is available, the Focus Group makes the recommendation below concerning foreign-origin sources recovered by the GTRI/OSRP for national security, public health and safety purposes.

<table>
<thead>
<tr>
<th>Recommendation E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-disposal of foreign-origin americium-241, plutonium-238 and plutonium-239 sources with domestic sources. Federal and State Governments should provide long-term secured storage of sources recovered from U.S. owners that contain foreign-origin americium and plutonium radioactive material, pending availability of a disposal pathway so that these sources can be recovered now, and increase efforts to investigate options for disposal of these sources.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steps Towards Implementation</th>
<th>Messaging Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DOE and NNSA can increase efforts to explore temporary storage and disposal solutions pending the opening of the future GTCC facility.</td>
<td>Stakeholders support DOE and NNSA efforts to find a solution among currently operating facilities for this waste stream pending the opening of the GTCC facility.</td>
</tr>
</tbody>
</table>
IV. Conclusion

The recommendations presented here are intended to address all three of the sealed source disposal challenges identified in the Part 1 Deliverable, including large beta/gamma sources, small beta/gamma sources, and sources produced with foreign-origin radioactive material. In down-selecting to these recommendations, Focus group members considered a breadth of criteria, although two criteria emerged as particularly important: burden sharing and feasibility. Regardless of the solution pathways ultimately chosen, the nature of the problem requires concerted action at the highest levels of Federal and State government in collaboration with the private sector. The Focus Group’s activities are intended to encourage and inform these efforts.
Appendix A

Focus Group Participant List
Appendix A – Focus Group Participant List

<table>
<thead>
<tr>
<th>Name</th>
<th>Agency/Organization</th>
<th>Participant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allard, David</td>
<td>Conference of Radiation Control Program Directors and Organization of Agreement States/ Pennsylvania</td>
<td>NGCC</td>
</tr>
<tr>
<td>Anderson, Curtis</td>
<td>National Nuclear Security Agency (NNSA)/MELE Associates, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Buzzell, Jennifer</td>
<td>Centers for Disease Control</td>
<td>SME</td>
</tr>
<tr>
<td>Cuthbertson, Abigail</td>
<td>Department of Energy/NNSA</td>
<td>NGCC</td>
</tr>
<tr>
<td>Cutler, Kirsten</td>
<td>Department of State</td>
<td>NGCC</td>
</tr>
<tr>
<td>Dickson, Howard</td>
<td>Dickson Consulting LLC</td>
<td>SME</td>
</tr>
<tr>
<td>Dornsife, Bill</td>
<td>Waste Control Specialists</td>
<td>SME</td>
</tr>
<tr>
<td>Elsen, Mike</td>
<td>Conference of Radiation Control Program Directors/Washington</td>
<td>SME</td>
</tr>
<tr>
<td>Fairbent, Lynne</td>
<td>The American Association of Physicians in Medicine</td>
<td>NSCC</td>
</tr>
<tr>
<td>Gallghar, Bob</td>
<td>Conference of Radiation Control Program Directors-Organization of Agreement States/ Massachusetts</td>
<td>NGCC</td>
</tr>
<tr>
<td>Gallego, Rich</td>
<td>Thomas Gray and Associates, Inc</td>
<td>SME</td>
</tr>
<tr>
<td>Hageman, John</td>
<td>Southwest Research Institute</td>
<td>SME</td>
</tr>
<tr>
<td>Harness, Kyle</td>
<td>Ohmart/VEGA Corp</td>
<td>SME</td>
</tr>
<tr>
<td>Haynes, Richard</td>
<td>Conference of Radiation Control Program Directors/South Carolina</td>
<td>SME</td>
</tr>
<tr>
<td>House, William</td>
<td>Energy Solutions/Barnwell</td>
<td>SME</td>
</tr>
<tr>
<td>Joyce, Jamie</td>
<td>Department of Energy/Environmental Management</td>
<td>SME</td>
</tr>
<tr>
<td>Kroeger, Nathan</td>
<td>Rad Source Technologies, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Martin, David</td>
<td>Department of Homeland Security, Nuclear Sector-Specific Agency/Energetics Incorporated</td>
<td>NGCC</td>
</tr>
<tr>
<td>McBurney, Ruth</td>
<td>Conference of Radiation Control Program Directors</td>
<td>SME</td>
</tr>
<tr>
<td>Miller, John</td>
<td>International Isotopes, Inc.</td>
<td>NSCC</td>
</tr>
<tr>
<td>Nicodemus, Dennis</td>
<td>Nevada Division of Environmental Protection</td>
<td>SME</td>
</tr>
<tr>
<td>Renquist, Cary</td>
<td>Eckert-Ziegler</td>
<td>NSCC</td>
</tr>
<tr>
<td>Ribaudo, Catherine</td>
<td>National Institutes of Health/Radiation Safety</td>
<td>NGCC</td>
</tr>
<tr>
<td>Rogers, Alice</td>
<td>Conference of Radiation Control Program Directors/Texas Department of State Health Services</td>
<td>NGCC</td>
</tr>
<tr>
<td>Roughan, Kate</td>
<td>QSA Global</td>
<td>NSCC</td>
</tr>
<tr>
<td>Schultheisz, Daniel</td>
<td>Environmental Protection Agency</td>
<td>SME</td>
</tr>
<tr>
<td>Selig, Edward</td>
<td>Advocates for Responsible Disposal in Texas</td>
<td>SME</td>
</tr>
<tr>
<td>Shaffner, James</td>
<td>Nuclear Regulatory Commission</td>
<td>NGCC</td>
</tr>
<tr>
<td>Sommerville, Jim</td>
<td>State of Georgia</td>
<td>SME</td>
</tr>
<tr>
<td>Storton, John (Jack)</td>
<td>Babcock & Wilcox</td>
<td>SME</td>
</tr>
<tr>
<td>Surovi, Scott</td>
<td>Covidien</td>
<td>NSCC</td>
</tr>
<tr>
<td>Tonkay, Doug</td>
<td>Department of Energy/Environmental Management</td>
<td>SME</td>
</tr>
<tr>
<td>Williams, Jim</td>
<td>Department of Transportation</td>
<td>NGCC</td>
</tr>
<tr>
<td>Whitworth, Julia</td>
<td>Los Alamos National Laboratory/NNSA</td>
<td>SME</td>
</tr>
<tr>
<td>Wiza, Jerry</td>
<td>RAM Services, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Zarling, John</td>
<td>Los Alamos National Laboratory/NNSA</td>
<td>SME</td>
</tr>
</tbody>
</table>
Sealed Source Disposal and National Security: Problem Statement and Solution Set
(This page intentionally left blank)
Foreword

The closure of the low-level radioactive waste disposal site in Barnwell, South Carolina in July 2008 to out-of-compact waste, coupled with other challenges to the disposition of low-level radioactive waste, has increased concerns in the public and private sectors about the security of disused radioactive sealed sources without a disposal pathway. During their service lives, radioactive sealed sources provide numerous essential and beneficial medical, industrial, and research applications. After their service lives have ended, these radioactive sealed sources make up less than 1% of all low-level radioactive waste (LLRW) by volume and activity. However, due to their highly concentrated activity and their portability, some of these sources could be used—either individually or in aggregate—in radiological dispersal devices commonly referred to as “dirty bombs.” Thousands of radioactive sealed sources each year become disused. However, as of July 2008, only 14 states have access to disposal facilities for sealed sources classified as LLRW.

In response to these concerns, the Nuclear Government Coordinating Council (NGCC) and Nuclear Sector Coordinating Council (NSCC), through the Department of Homeland Security’s Nuclear Critical Infrastructure Protection Advisory Council (CIPAC), created the Removal and Disposition of Disused Sources Focus Group (“Focus Group”) in February of 2009. The objective of the public and private sector collaboration in the Focus Group is to fully characterize the challenge, develop a consensus problem statement, explore medium and long-term solutions, and recommend to the NSCC and NGCC a messaging strategy for communicating with the appropriate stakeholders to implement a solution. This whitepaper serves as the first part of that deliverable. It includes a consensus view of the scope and character of the challenge, a consensus problem statement, and a consensus determination of options from which specific solutions can be further explored and identified. The Focus Group will continue its work in the coming months to accomplish the second part of the deliverable—explore potential solutions to the problem and a messaging strategy for use by the NSCC-NGCC.

This paper is intended not only to inform the NSCC and NGCC, but also to be used as a communication tool for those seeking to engage public and private stakeholders about the sealed source disposal challenge and potential solutions. It represents a consensus view of Focus Group participants, but does not necessarily reflect their respective agencies’ or organizations’ positions.
Table of Contents

Removal and Disposition of Disused Sealed Sources Focus Group...19

Radioactive Sealed Sources and Low-Level Radioactive Waste...19

Sealed Source Security ..22

Current Challenges to Sealed Source Disposal..22

Current Trends in Sealed Source Disuse..25

Potential Solutions ..27

Next Steps ...27

Appendix A: Focus Group Participant List..31

Appendix B: Disposition or Disposal of Cesium-Chloride Radioactive Sealed Sources..............................33

Appendix C: Background Information on the Closure of Barnwell...35

Appendix D: Background Information on the EnergySolutions/Clive Lawsuit..37
Removal and Disposition of Disused Sealed Sources Focus Group

In September 2008, the Department of Homeland Security (DHS), under the auspices of the Nuclear Critical Infrastructure Partnership Advisory Council (CIPAC), facilitated a public and private sector Sealed Source Security Workshop. Workshop participants, including Federal, State, local, and private sector stakeholders, identified the lack of a commercial disposal pathway for disused radioactive sealed sources, a subset of Low-Level Radioactive Waste (LLRW), as a potential national security concern.

In December 2008, the Nuclear Government Coordinating Council (NGCC) created a Removal and Disposition of Disused Sources Focus Group (“the Focus Group”) within the CIPAC framework in order to more fully characterize the issue, explore potential solutions, and to recommend to the NGCC a messaging strategy for communicating with the appropriate stakeholders to implement a solution. This whitepaper serves as the first part of that deliverable.

The Focus Group has met on a monthly or semi-monthly basis since February 2009 and has included members of the NSCC and NGCC, as well as subject matter experts (SMEs) from across the radioactive sealed source stakeholder community, including manufacturers, distributors, users, storage and disposal companies, regulators, other Federal and State officials, and LLRW compact members. This whitepaper represents a consensus view of these participants, but does not necessarily reflect their respective agencies’ or organizations’ positions. The Focus Group participants are listed in Appendix A.

In addition to ensuring that sealed sources have commercial disposal access, there are a number of further considerations that are important to the safety and security of radioactive sealed sources that are beyond the scope of this Focus Group. These considerations include transportation limitations (including a shortage of available transportation packages for some sources), financial considerations for disposal, security in storage, import and export controls, and alternative technologies.

Radioactive Sealed Sources and Low-Level Radioactive Waste

Radioactive sealed sources are widely used for a variety of essential medical, industrial, and research purposes. Table 1 on the next page describes common medical and industrial uses of radioactive sealed sources. When these sources come to the end of their service lives, many are classified as LLRW. Most LLRW by volume is comprised of objects containing relatively low level of radioactive material from nuclear facilities (such as pieces of radioactive reactor components and radioactively contaminated clothing and equipment). In contrast, radioactive sealed sources are generally small capsules or manufactured items that contain relatively high concentrations of radioactivity.
Sealed Source Disposal and National Security – Recommendations and Messaging Strategy

Due to the small size and high radioactivity of some commonly used sealed sources, they are of particular concern from a public health, safety, and national security standpoint. If used—either individually or in aggregation—in a radiological dispersal device (RDD) or “dirty bomb”, these sources could cause billions of dollars worth of contamination and result in serious health consequences for exposed individuals.\(^1\) In addition, these sources, if misplaced or improperly removed from their shielding, mistakenly melted into scrap metal, or otherwise breached or damaged, could cause millions of dollars worth of contamination damage or cause serious burns and high radiation doses to exposed individuals.\(^2\)

Table 1. Widely Used Radioactive Sealed Sources

<table>
<thead>
<tr>
<th>Device</th>
<th>Radionuclide</th>
<th>Typical Activity in Curies (Ci) Range</th>
<th>IAEA Source Category(^a)</th>
<th>Waste Class(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panoramic irradiators used to irradiate single-use medical devices and products, cosmetics, food, and plastics.</td>
<td>Cobalt-60</td>
<td>150,000 - 5,000,000</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Self-shielded irradiators/blood-tissue irradiators.</td>
<td>Cesium-137</td>
<td>2,500-42,000</td>
<td>1.2</td>
<td>B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cobalt-60(^c)</td>
<td>1,500-50,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gamma knife (fixed, multibeam teletherapy).</td>
<td>Cobalt-60</td>
<td>4,000-10,000</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Teletherapy, which uses radiation directed at a human or animal body to treat many serious diseases, most notably cancer.</td>
<td>Cesium-137</td>
<td>500-1,500</td>
<td>2</td>
<td>B, C</td>
</tr>
<tr>
<td></td>
<td>Cobalt-60</td>
<td>1,000-15,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Calibration sources, generally used to calibrate various radiation measuring and monitoring instruments</td>
<td>Americium-241</td>
<td>1-25</td>
<td>2,3,4</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cesium-137</td>
<td>1.5-14,000</td>
<td>1,2,3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt-60(^c)</td>
<td>0.55-16,000</td>
<td>1,2,3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plutonium-239/Beryllium</td>
<td>2-25</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strontium-90</td>
<td>0.05-2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Industrial radiography widely used in the chemical, petrochemical, and building industries for radiographic inspection of pipes, boilers, and structures where consequences of failure can be severe.</td>
<td>Cesium-137</td>
<td>5-12</td>
<td>3</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cobalt-60(^c)</td>
<td>11-330</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iridium-192</td>
<td>5-290</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium-75</td>
<td>80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thulium-170</td>
<td>20-200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ytterbium-169</td>
<td>2.5-200</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Fixed industrial gauges (level, dredger, conveyor, blast furnace, and spinning pipe) used for a wide variety of industrial and manufacturing purposes, primarily to monitor production processes.</td>
<td>Cesium-137</td>
<td>0.1-40</td>
<td>2,3,4</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cobalt-60(^c)</td>
<td>0.1-20</td>
<td>2,3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plutonium-238</td>
<td>20</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Californium-252</td>
<td>0.034</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krypton-85</td>
<td>0.05-1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Widely Used Radioactive Sealed Sources (cont.)

<table>
<thead>
<tr>
<th>Device</th>
<th>Radionuclide</th>
<th>Typical Activity in Curies (Ci) Range</th>
<th>IAEA Source Category</th>
<th>Waste Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-logging sources used for characterizing subsurface properties such as density and moisture percentages. Most commonly associated with oil and mineral exploration.</td>
<td>Americium-241/Beryllium</td>
<td>0.5-20</td>
<td>2,3,4</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Californium-252</td>
<td>0.027-1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cesium-137</td>
<td>0.5-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt-60</td>
<td>1-20</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plutonium-238/Beryllium</td>
<td>5-70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radium-226</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachytherapy (high, medium and low dose rate), which uses either beta or gamma sources to irradiate tumors over a very small area and thickness of tissues.</td>
<td>Cobalt-60</td>
<td>1-20</td>
<td>2,3</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cesium-137</td>
<td>0.1-8</td>
<td>3,4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iridium-192</td>
<td>0.02-15</td>
<td>3,4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radium-226</td>
<td>0.005-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodine-125</td>
<td>0.005-1.3</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold-198</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Californium-252</td>
<td>0.083-0.54</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strontium-90</td>
<td>0.02-0.12</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruthenium/Rhodium-106</td>
<td>0.00022-0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palladium-103</td>
<td>0.03-0.0056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac pacemakers.</td>
<td>Plutonium-238</td>
<td>2.9-8</td>
<td>3</td>
<td>B, C, GTCC</td>
</tr>
<tr>
<td>Research reactor startup sources.</td>
<td>Americium-241/Beryllium</td>
<td>2-5</td>
<td>3</td>
<td>B, C, GTCC</td>
</tr>
<tr>
<td>Static eliminators used in the production of paper, textiles, plastic and electrical circuits. They are particularly useful in hazardous areas where electrical devices cannot be used.</td>
<td>Americium-241/Beryllium</td>
<td>0.03-0.11</td>
<td>4</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Polonium-210</td>
<td>0.03-0.11</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Portable gauges (moisture and density) used in the field at construction sites and on farms. The gauges are typically used to determine the moisture and density of a material such as soil or asphalt.</td>
<td>Americium-241/Beryllium</td>
<td>0.01-3</td>
<td>3,4,5</td>
<td>A, B, C, GTCC</td>
</tr>
<tr>
<td></td>
<td>Cesium-137</td>
<td>0.008-0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radium-226</td>
<td>0.002-0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Californium-252</td>
<td>0.00003-0.00007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The International Atomic Energy Agency (IAEA) categorization system is based on “the potential for radioactive sources to cause deterministic health effects. This potential is due partly to the physical properties of the source, especially its activity, and partly to the way in which the source is used.” See, IAEA Safety Guide No. RS-G-1.9, Categorization of Radioactive Sources 2005, Annex I, page 37, available at http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227_web.pdf.

b Refers to Nuclear Regulatory Commission’s (NRC’s) classification of LLRW for land disposal found in 10 CFR Part 61. Activity per unit mass or volume classification limits are related to relative hazard and necessity for waste isolation. Class A represents the least hazard, Class B represents a greater hazard, and Class C the greatest hazard appropriate for near surface disposal. Waste with an activity concentration Greater-Than-Class-C (GTCC) must be disposed of in a geologic repository unless NRC approves an alternate disposal site.

c There are no limits established for cobalt-60 in Class B or C wastes. Practical considerations such as the effects of external radiation and internal heat generation on transportation, handling, and disposal will limit the concentrations for these wastes. These wastes shall be Class B unless the concentrations of other nuclides in Table 2 in 10 CFR § 61.55 determine the waste to be Class C independently of these nuclides.
Sealed Source Security

Due to the potential public health, safety, and national security concerns of lost or stolen sealed sources, the sealed source community—including sealed source manufacturers, distributors, and users, Federal, State, and local officials, and those involved in the radioactive waste storage and disposal industry—encourages sealed source users to permanently dispose of sources that are no longer in use and cannot be recycled. The Interagency Radiation Source Protection and Security Task Force’s (“Task Force”) 2006 Report to Congress and the President (“Task Force Report”) notes that “holding a source in storage longer than 24 months usually indicates the lack of a strategy to use or dispose of the source.” The Task Force has also described the potential risk posed by a lack of sealed source disposition options. The Task Force Report notes that “either a lack of legal disposal path or high costs because of a lack of adequate disposal options is causing some licensees to store their unused or unwanted sources until the disposal situation improves. Providing adequate disposal for these sources will have a much greater effect on reducing the total risk of long-term storage (by reducing the number of sources in long-term storage) than any additional changes to the storage requirements.” In addition, reducing the number of sources in storage will reduce the number of storage locations, thereby decreasing the number of attractive targets for those who seek to illegitimately procure a sealed source for malicious purposes.

Finally, the Task Force Report notes that “lifecycle management of risk-significant radioactive sources is key to preventing sources from becoming abandoned, lost, or diverted for malicious use,” and the Government Accountability Office (GAO) has noted that “domestic and international experts contend that the lack of disposal availability for unwanted sealed radiological sources makes them more vulnerable to abandonment, misplacement, and theft that would pose a safety and security risk.”

Current Challenges to Sealed Source Disposal

The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA), which amended the 1980 Low-Level Radioactive Waste Policy Act, assigned separate responsibilities to the states and the federal government for disposal of low-level radioactive waste. Under the LLRWPAA, States are responsible for providing disposal for Class A, B, and C low-level radioactive waste in a facility licensed by either the NRC or an Agreement State. The Department of Energy (DOE) is responsible for disposal of “greater-than-class C” (GTCC) low-level radioactive waste.

As an incentive for states to manage LLRW waste on a regional basis, Congress consented in the Omnibus Low-Level Radioactive Waste Interstate Compact Consent Act (a part of LLRWPAA) to interstate agreements, known as compacts, and granted the compacts the authority to exclude LLRW from states outside of their compacts. The Atlantic Compact,

3. Report of the Radiation Source Security and Protection Task Force, August 15, 2006, page 83. As part of the Energy Policy Act of 2005, an Interagency Task Force for Radiation Source Protection and Security (Task Force) was created to report periodically to the President on these and other topics. The task force is chaired by the NRC and comprised of 14 federal agencies as well as State organizations. The Task Force released its initial report in August 2006 and will produce an updated report in August 2010.

7. According to section 3(a)(1) of the LLRWPAA (42 USC 2021c(a)(1)), States are responsible for Class A, B, and C LLRW generated by non-federal entities and most federal LLRW waste other than DOE owned/generated and U.S. Naval decommissioning LLRW.

8. Under the Atomic Energy Act (AEA), the NRC is authorized to transfer some of its authority to the States on a state-by-state basis to regulate byproduct and source material and very small quantities of special nuclear material. These states are known as Agreement States. To date 37 States have become Agreement States.

9. LLRWPAA specifies that GTCC LLRW that results from NRC-licensed activities must be disposed of in an NRC-licensed facility.
Sealed Source Disposal and National Security – Recommendations and Messaging Strategy

comprised of Connecticut, New Jersey and South Carolina, is served by the LLRW facility at Barnwell, South Carolina, which also accepted LLRW from states outside of the Atlantic Compact. In June 2000, South Carolina enacted legislation that restricted access to the Barnwell facility to Atlantic Compact states only, effective July 1, 2008. Appendix C to this document provides further background on the closure of Barnwell to waste generated outside the Atlantic Compact.

Barnwell’s closure to non-Atlantic Compact States on July 1, 2008 has left LLRW generators in 36 states without a commercial disposal option for their disused sealed sources. As a result, LLRW generators in only 14 States have access to a disposal facility for Class A, B, and C disused sealed sources. The remaining 36 states must store their LLRW disused sealed sources unless other disposition options are identified. As depicted in the map in Figure 1, only two commercial disposal facilities (the facility operated by Energy Solutions in Barnwell, South Carolina and the facility operated by American Ecology in Richland, Washington) currently accept Class A, B, and C sealed sources from states within three of the regional compacts. A third LLRW commercial disposal facility, operated by Energy Solutions in Clive, Utah, does not currently accept any sealed sources.

Furthermore, there is currently no disposal pathway for commercial sealed sources that are greater-

Figure 1: LLRW Sealed Source Disposal

Only Energy Solutions in Barnwell, South Carolina, and American Ecology in Richland, Washington, can dispose of commercial A, B, and C sealed sources. Both sites are now closed to out-of-compact waste (except for radium-226 at the American Ecology facility) and only 14 states can now dispose of LLRW sealed sources.

Legend:
- States with access to American Ecology in Richland, WA.
- States with access to Energy Solutions in Barnwell, SC.
- States with no sealed source disposal access.

10. However, because of its relatively low activity limits, Barnwell does not accept most Class B and C LLRW sealed sources from Atlantic Compact states (see Table 2).

11. On September 10, 2009, the Executive Director of the Texas Commission on Environmental Quality (TCEQ) signed the final Radioactive Material License for the disposal of Class A, B and C low-level radioactive waste at Waste Control Specialists’ (WCS) facility in Andrews County. The license allows WCS to operate two separate facilities for the disposal of Class A, B and C low-level radioactive waste—one for the Texas Low-Level Radioactive Waste Disposal Compact (which is comprised of Texas and Vermont), the other for waste designated as a federal responsibility under section 3(b)(1)(A) of the LLRWAA.

12. Barnwell serves the Atlantic Compact states (Connecticut, New Jersey, and South Carolina) and American Ecology in Richland, Washington serves the Northwest Compact states (Alaska, Hawaii, Idaho, Montana, Oregon, Utah, Washington, and Wyoming) and the Rocky Mountain compact states (Colorado, Nevada, and New Mexico). The remaining 36 states are without a LLRW sealed source disposal option.
than-Class C (GTCC). DOE, which is responsible for GTCC disposal, is currently preparing an Environmental Impact Statement that analyzes alternatives for GTCC LLRW disposal. Table 2 demonstrates current commercial sealed source disposal landscape, including the Class A, B, C, and GTCC disposal limits for several commercially available sealed source radionuclides. DOE estimates that a GTCC LLW disposal facility could become available in approximately 10 years.

Table 2 – The Current Commercial Sealed Source Disposal Landscape

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Maximum Limit Alloweda</th>
<th>GTCC Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barnwell Facility (3 States)</td>
<td>Richland Facility (11 States)</td>
</tr>
<tr>
<td>Americium-241</td>
<td>10 nCi/gm</td>
<td>100 nCi/gm</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td></td>
<td>No disposal available b</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td></td>
<td>No disposal available b</td>
</tr>
<tr>
<td>Californium-252</td>
<td>10 Ci</td>
<td>13 Ci</td>
</tr>
<tr>
<td>Curium-244</td>
<td>100 nCi/gm</td>
<td>100 nCi/gm</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>10 Ci</td>
<td>145 Ci</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>10 Ci</td>
<td>976 Ci</td>
</tr>
<tr>
<td>Iridium-192</td>
<td>10 Ci</td>
<td>13 Ci</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>10 Ci</td>
<td>1,486 Ci</td>
</tr>
<tr>
<td>Radium-226</td>
<td>Disposal of radium-226 is available to all states at the Richland facility up to 1.2 Ci per source. e</td>
<td>NA d</td>
</tr>
</tbody>
</table>

Color Code

- Disposal available commercially for Compact states up to maximum Class C limits for applicable radionuclides, considering concentration averaging.
- Disposal available commercially for Compact States but maximum limit is less than Class C limits for applicable radionuclides due to site-specific administrative limits, waste acceptance criteria, or license conditions.
- Disposal capability being developed by DOE. b
- No disposal available.

a The maximum curie or activity limit allowed for an individual sealed source containing the specified radionuclide based on site-specific administrative limits, waste acceptance criteria, application of concentration averaging, or license conditions.

b A GTCC LLRW disposal facility does not currently exist; DOE is preparing an Environmental Impact Statement analyzing potential disposal alternatives for this waste. The maximum limit for the facility will be determined during the implementation and licensing phase for the selected alternative and will be greater than the Class C waste classification values shown in the Table (which assumes application of concentration averaging).

c The facility may accept sources in excess of this limit on a case-by-case basis based on worker exposure and other site-specific considerations.

d Sealed sources consisting of these radionuclides are not classified as GTCC LLRW when sent for disposal because there is no maximum Class C limit for the radionuclide or the radionuclide is not included in the list of radionuclides in 10 CFR § 61.55, Tables 1 and 2 that determine LLRW classification.

e Diffuse radium-226 is still considered naturally occurring radioactive material (NORM) for purposes of disposal, but discrete Ra-226 sources are now considered "byproduct material" per the NRC and compatible Agreement State regulations. However, the 2005 Energy Policy Act has excluded radium-226 sources as LLRW, and some compact regulations still consider radium-226 containing waste as NORM. Disposal options are therefore still available to all states.
Sealed Source Disposal and National Security – Recommendations and Messaging Strategy

Current Trends in Sealed Source Disuse

Because sealed source licensees are not always required to report the reasons for keeping sealed sources in storage, it is difficult to know how many and what type of disused sealed sources are in storage as the result of the current lack of commercial LLRW disposition options. However, several initiatives to reduce the risk posed by storage of disused sources indicate the general magnitude of the problem.

The National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) Off-Site Source Recovery Project (OSRP) removes excess, unwanted, or orphaned radioactive sealed sources that pose a potential risk to public health, safety, and/or national security. The initial scope of the project included only GTCC sources. However, since the September 11 attacks, the mission has expanded to address broader public safety and national security requirements. In addition to disused GTCC sources, the expanded OSRP mission now includes recovery of a wide range of sources that, when designated as waste, would be classified as Class A, B, C, and GTCC low-level radioactive waste. GTRI prioritizes the recovery of registered disused radioactive sealed sources based on threat reduction criteria developed in coordination with the NRC.

The Conference of Radiation Control Program Directors (CRCPD) and GTRI have also collaborated to recover disused and orphaned sources through the Source Collection and Threat Reduction (SCATR) Program. SCATR’s goal is to collect unwanted sealed sources that pose a potential threat to public health, safety, and national security. The CRCPD SCATR program is limited to non-actinide13 sources less than 10 curies in activity. Examples of sources that would be eligible for the SCATR program include medical brachytherapy sources such as cesium-137 and radium-226, low-activity sources that exceed the NRC 120-day half-life limit for decay-in-storage, long half-life industrial sources, and calibration sources. Since its inception in 2007, the SCATR program has recovered 5,100 disused sources.14

In total, GTRI and its partners have been able to recover more than 22,000 sources representing over 700,000 curies from more than 700 sites in the United States. Many of these sources, if they had been lost or stolen and misused, could have caused the economic and health consequences described in the problem statement. Table 3 on the next page demonstrates the type, number, and radioactivity of the sealed sources recovered by GTRI since 1997.

13 Actinide sources include Americium, Plutonium, Curium, and Californium.

14 CRCPD also receives funding from the NRC for the CRCPD Orphan Source Program. Under the program, CRCPD recovers lower-activity unwanted beta/gamma sources. This program deals exclusively with “orphan” sources that no longer have a licensed owner.
In order to request that the GTRI recover a disused source through OSRP, the current owner must register the source with OSRP (http://osrp.lanl.gov). As of August 2009, there were over 9,000 sources registered, including americium-241, cesium-137, cobalt-60, radium-226 and other isotopes used in a wide variety of applications. On average, approximately 2,500-3,000 additional sealed sources are registered as unwanted each year. Since the closure of Barnwell, GTRI/OSRP has received numerous requests to accept sources that were formerly eligible for disposal at Barnwell, including thousands of additional smaller beta-gamma sources such as cesium-137 and cobalt-60.

In the course of its source recovery activities, GTRI/OSRP has identified three primary disposal-related challenges:

Disposal Challenge 1 – Lack of disposal for high-activity beta/gamma sources (primarily cobalt-60, cesium-137, and strontium-90) in wide use primarily in medical and industrial irradiation and power generation applications. Commercial disposal facilities have activity limits below those found in many of these types of devices, even when the sources are not GTCC.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Number of Sources</th>
<th>Percentage of Total Sources</th>
<th>Curies</th>
<th>Percentage of Total Curies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americium-241</td>
<td>13,162</td>
<td>58.05%</td>
<td>14,722</td>
<td>2.06%</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td>2,292</td>
<td>10.11%</td>
<td>11,479</td>
<td>1.60%</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>613</td>
<td>2.70%</td>
<td>768</td>
<td>0.11%</td>
</tr>
<tr>
<td>Curium-244</td>
<td>517</td>
<td>2.28%</td>
<td>54</td>
<td>0.01%</td>
</tr>
<tr>
<td>Californium-252</td>
<td>243</td>
<td>1.07%</td>
<td><1</td>
<td>0.00%</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>3,366</td>
<td>14.85%</td>
<td>18,658</td>
<td>2.61%</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>873</td>
<td>3.85%</td>
<td>77,350</td>
<td>10.81%</td>
</tr>
<tr>
<td>Radium-226</td>
<td>596</td>
<td>2.63%</td>
<td>5</td>
<td>0.00%</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>55</td>
<td>0.24%</td>
<td>592,738</td>
<td>82.81%</td>
</tr>
<tr>
<td>Other radionuclides</td>
<td>955</td>
<td>4.21%</td>
<td>1</td>
<td>0.00%</td>
</tr>
<tr>
<td>Totals</td>
<td>22,672</td>
<td>100%</td>
<td>715,775</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3 – GTRI/OSRP Sources Recovered 1997 to 2009

There have been discussions in recent years about the future of cesium-chloride sources, including looking at the feasibility of phasing out highly dispersible forms of cesium-chloride. Appendix B to this document summarizes those discussions. If cesium-chloride is phased out or eliminated, the cesium-chloride disposal challenge could be exacerbated, depending on the rate at which cesium-chloride use is curtailed or eliminated.

Disposal Challenge 2 – Lower-activity beta/gamma sealed sources in the 36 states without disposal access. These sources are used in a wide variety of medical and industrial applications.

Disposal Challenge 3 – Sealed sources using foreign-origin americium-241. There is a significant increase in the amount of foreign-origin americium-241 material that is incorporated into U.S. manufactured sources used by U.S. licensees because the U.S. no longer produces americium-241. All new gauges and devices utilizing americium-241 must use foreign-origin material. However, US-manufactured sealed sources containing foreign-origin material—including americium-241, plutonium-238, and plutonium-239—that exceed the thresholds for Class C disposal, do not currently have a disposal path in the U.S.
Potential Solutions

The Focus Group has worked over the past eight months to collect information and perspectives on a wide range of potential solutions, which are summarized in Table 4 below. Group members recognize that the ultimate solution may be a combination of these or other options in order to resolve the specific challenges posed by sealed sources of different types, classes, and origins. Furthermore, developments in a number of ongoing activities, such as the DOE effort to develop a GTCC disposal facility, final legal determination regarding the authority of the Northwest Compact vis-à-vis the Clive, Utah, facility, and the Waste Control Specialists (WCS) licensing process underway in Texas, may impact the ultimate solution.

In addition, there are several programs underway to recycle used sealed sources. Source recycling can be cost effective and in the short-term reduce the number of disused sealed sources. However, due to damage, low activity, physical configuration, or short half-life, source recycling is not always an option. Even in the case of recycled sources, the useful life will eventually terminate and the source owner will need to dispose of the source if a disposal pathway is available, or store the source onsite if no disposition pathway exists.

To address the three disposal challenges specified above and pursue any one or a combination of the solutions described below, a broad range of stakeholders will need to be involved. Given the potential impact on the sealed source community and the Nation in the event that a source is lost or stolen, and misused, Focus Group members agree that solutions must be found.

Next Steps

This paper constitutes a significant part of the deliverable requested by the NSCC and NGCC in December 2008, but does not include specific recommendations or a messaging strategy. The Focus Group will continue its efforts to fully explore and evaluate the potential options above and seek to “down-select” from these, providing the NSCC and NGCC recommended options and the appropriate messaging strategy for working with stakeholders to implement a solution. The Focus Group also intends for this part of the deliverable to be used to communicate the scope and character of the challenge and possible solutions to LLRW stakeholders.

Table 4 – Potential Solutions

<table>
<thead>
<tr>
<th>Disposal/Management Alternative</th>
<th>Advantages</th>
<th>Implementation Challenges</th>
</tr>
</thead>
</table>
| 1 Commercial, for-profit Class A, B, and C disposal facility w/DOE GTCC facility | • Shared site, construction, and operations aspects for efficiency
• Limit public/political concerns to one site
• Would address disposal challenge #1 and #2 | • Possible separate regulatory authorities/requirements for each facility (if located in an Agreement State)
• Economic viability challenged by limited waste volumes
• Could require Federal legislation and/or appropriations
• Would require compact approval to accept out-of-compact waste |
| 2 Co-disposal of foreign-origin Am-241, Pu-238 and Pu-239 sources with domestic sources | • Disposal of waste is based on the same physical, chemical, and radiological characteristics
• Would address disposal challenge #3 | • Could require case-by-case review and/or legislative changes
• Could raise questions concerning the propriety of expending public resources for the benefit of the private sector |

15. Appendix D to this document provides further information with regard to this litigation.
16. In September 2009, the State of Texas issued the final license for a LLRW disposal facility to be operated in Andrews County, Texas, by Waste Control Specialists (WCS) to serve the needs of the Texas Compact (Texas and Vermont) at the present time.
Table 4 – Potential Solutions (cont.)

<table>
<thead>
<tr>
<th>Disposal/Management Alternative</th>
<th>Advantages</th>
<th>Implementation Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Physical destruction and down-blending for disposal as Class A LLRW</td>
<td>• Would comply with waste acceptance criteria (WAC) at the Clive facility, which is the only commercial disposal facility with no compact limitations
• Would address disposal challenge #2 and possibly a subset of challenge #1</td>
<td>• Destruction of sealed sources may increase the risk of environmental or occupational contamination
• Down-blending to meet waste acceptance criteria may be opposed by regional, state, or local stakeholders</td>
</tr>
<tr>
<td>4 Concentration averaging of LLRW to allow management as GTCC waste by DOE</td>
<td>• Technically viable for many sealed source waste classes
• Would address subset of sources in disposal challenge #1 and #2</td>
<td>• Could be construed as inconsistent with the division of responsibilities between the Federal Government and the states as envisioned in the LLRWPA</td>
</tr>
<tr>
<td>5 Increase decay-in-storage horizon to facilitate management of short half-life sealed sources</td>
<td>• Could decay sources to Class A level and perhaps exempt levels removing the need for Class B or C disposal access
• Technically viable for shorter half-life material, including cobalt-60
• Would address subset of sources in disposal challenge #1 and #2</td>
<td>• Solution limited to relatively short half life sealed sources
• Expensive life cycle cost
• Requires fairly long-term (50 yr) security
• Potentially significant institutional concerns with long-term LLRW storage
• Does not solve the lack of disposal options for sealed sources of any class in 36 States</td>
</tr>
<tr>
<td>6 Targeted emergency disposal access per NRC authorization to address immediate security need via 10 CFR Part 62, “Emergency Access To Non-Federal And Regional Low-Level Waste Disposal Facilities”</td>
<td>• Possible stopgap solution for small, specific waste stream in extreme emergency with no other alternative
• Would address subset of sources in disposal challenge #1 and #2</td>
<td>• NRC’s implementation regulation, 10 CFR Part 62 establishes a formidable threshold for justifying that an emergency exists that cannot be mitigated by other means
• The rule is intended to be very limited in time and waste streams
• In over twenty years there have been no requests for implementation</td>
</tr>
<tr>
<td>7 Case by case exemption by existing compacts for disposal of discrete numbers of high-risk sealed sources</td>
<td>• Relatively immediate solution for part of the sealed source disposal problem
• Would address subset of disposal challenge #1 and #2</td>
<td>• Regional, State, and local stakeholders may object
• Case by case exemptions for the large number of sources without disposal access would be administratively burdensome</td>
</tr>
<tr>
<td>8 Range of DOE GTCC disposal alternatives addressed in draft GTCC Environmental Impact Study</td>
<td>• Would likely involve a relatively small physical “footprint”
• Would address subset of sources in disposal challenge #1 and #2 and all sources in disposal challenge #3</td>
<td>• Scope of GTCC EIS limited to GTCC waste
• Multiple year process before construction could begin
• Timeline is highly dependent on Congressional action</td>
</tr>
<tr>
<td>9 Develop/expand Federal/State/compact consolidated storage facility</td>
<td>• Provides short-term, temporary solution for spectrum of problematic radioactive sealed sources
• Would temporarily address sources in disposal challenge #1, #2, and #3</td>
<td>• Only temporary solution
• Responsibility of storage and disposition of Class A, B and C could transfer back and forth between Federal and state jurisdiction
• Additional life-cycle cost could be significant (paid by whom?)
• Would not address the reality that storage facilities do not want to store no-disposal-pathway waste
• Shortage of space is not a major obstacle for existing Federal storage facilities</td>
</tr>
</tbody>
</table>
Table 4 – Potential Solutionsa (cont.)

<table>
<thead>
<tr>
<th>Disposal/Management Alternative</th>
<th>Advantages</th>
<th>Implementation Challenges</th>
</tr>
</thead>
</table>
| 10 Develop/expand commercial consolidated storage facility | • Short-term solution potentially available now
• Waste remains under NRC/Agreement State regulatory control pending disposal
• Would temporarily address sources in disposal challenges #1, #2, and #3 | • Only temporary solution
• Questions about ultimate disposition of Class A, B, and C sealed sources remains
• Significant added life-cycle cost
• Would not address the reality that storage facilities do not want to store no-disposal-pathway waste |
| 11 Encourage/expand sealed source recycling programs | • Fewer political or legal obstacles to implementation
• Would temporarily address a subset of disposal challenges #1, #2, and #3 | • Only certain sources can be effectively recycled
• Only a short term solution for those sources that can be recycled |
| 12 New Federal disposal facility exclusively for all radioactive sealed sources, including Class A, B, C, and GTCC | • Permanent disposal of all classes of sealed sources
• Small footprint
• Potentially fewer institutional challenges (especially if on pre-existing federal facility)
• Would address subset of disposal challenge #1 and #2 | • Would require statutory and regulatory changes
• Could raise questions concerning the propriety of expending public resources for the benefit of the private sector
• There may be State/local opposition with regard to the siting of the new facility |
| 13 Open currently operating DOE LLRW disposal facilities for commercial LLRW | • Immediately available disposal capacity
• Immediate, permanent security provided for Class A, B, and C sealed source waste streams
• States relieved of statutory responsibility
• Would address sources in disposal challenge #1, #2, and #3 | • Would require statutory and regulatory changes
• Could raise questions concerning the propriety of expending public resources for the benefit of the private sector
• Could be opposed by host states and compacts |
| 14 New, “full service” commercial disposal facility developed outside of the compact restrictions | • Permanent disposal for Classes A, B, and C LLRW
• Traditional regulatory structure
• Would address sources in disposal challenge #1, #2, and #3 | • Economic incentive (e.g., business risk/reward) for assuming the risk is likely decades away
• Political challenges to development remain the same as during attempts to implement LLRWPA over the last two decades
• Would likely entail legislative changes |
Table 4 – Potential Solutions (cont.)

<table>
<thead>
<tr>
<th>Disposal/ Management Alternative</th>
<th>Advantages</th>
<th>Implementation Challenges</th>
</tr>
</thead>
</table>
| 15 Remove legal and regulatory restrictions that apply to currently operating commercial disposal sites | • Sufficient actual disposal capacity absent restrictions
• Permanent disposal for Classes A, B, C LLRW
• Traditional regulatory structure
• Would address subset of disposal challenge #1 and #2 | • No incentive for host states to change status quo
• No foreseeable dynamic for change
• Legislative changes would be necessary
• Existing host States have indicated that they may close sites if compact authorities to restrict waste are eliminated |
| 16 Utilize EPA Regulated Hazardous Waste Disposal Facilities under the Resource Conservation and Recovery Act (RCRA) to accept sealed sources, taking into consideration the half-life of the radionuclide and post-closure care period | • Currently in place at some RCRA disposal facilities for accelerator produced radioactive materials.
• Would address disposal challenge #2 | • Regional, State, and local stakeholders may object
• Legislative changes necessary
• Most sources require licensing per the Atomic Energy Act (AEA). It is unclear if RCRA facilities could meet AEA Part 61 licensing requirements.
• Thus far, no RCRA facility operators have sought AEA Part 61 license
• For some short half life waste, it may be possible to remove some AEA requirements through exemption process, but radiation protection rules are immutable. |

a There could be technical, regulatory, legal, and/or political challenges to some of the sealed source waste management alternatives provided in Table 4 beyond those listed under “Implementation Challenges.”
<table>
<thead>
<tr>
<th>Name</th>
<th>Agency/Organization</th>
<th>Participant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allard, David</td>
<td>Conference of Radiation Control Program Directors and Organization of Agreement States/Pennsylvania</td>
<td>NGCC</td>
</tr>
<tr>
<td>Anderson, Curtis</td>
<td>National Nuclear Security Agency (NNSA)/MELE Associates, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Buzzell, Jennifer</td>
<td>Centers for Disease Control</td>
<td>SME</td>
</tr>
<tr>
<td>Clarke, Devane</td>
<td>Texas Commission on Environmental Quality</td>
<td>SME</td>
</tr>
<tr>
<td>Coggins, Terry</td>
<td>Mississippi St. University</td>
<td>SME</td>
</tr>
<tr>
<td>Coleman, Norm</td>
<td>National Institutes of Health</td>
<td>SME</td>
</tr>
<tr>
<td>Cuthbertson, Abigail</td>
<td>Department of Energy/NNSA</td>
<td>NGCC</td>
</tr>
<tr>
<td>Cutler, Kirsten</td>
<td>Department of State</td>
<td>NGCC</td>
</tr>
<tr>
<td>Dallman, Lee</td>
<td>Ohmart/Vega Corp</td>
<td>SME</td>
</tr>
<tr>
<td>Devine, Terry</td>
<td>Conference of Radiation Control Program Directors</td>
<td>SME</td>
</tr>
<tr>
<td>Dornsife, Bill</td>
<td>Waste Control Specialists</td>
<td>SME</td>
</tr>
<tr>
<td>Elsen, Mike</td>
<td>Conference of Radiation Control Program Directors/Washington</td>
<td>SME</td>
</tr>
<tr>
<td>Fairobent, Lynne</td>
<td>The American Association of Physicists in Medicine</td>
<td>NSCC</td>
</tr>
<tr>
<td>Ferguson, Charles</td>
<td>Council on Foreign Relations/NNSA</td>
<td>SME</td>
</tr>
<tr>
<td>Gallagher, Bob</td>
<td>Conference of Radiation Control Program Directors-Organization of Agreement States/Massachusetts</td>
<td>NGCC</td>
</tr>
<tr>
<td>Gallego, Rich</td>
<td>Thomas Gray and Associates, Inc</td>
<td>SME</td>
</tr>
<tr>
<td>Hageman, John</td>
<td>Southwest Research Institute</td>
<td>SME</td>
</tr>
<tr>
<td>Hansen, Annette</td>
<td>Philotechnics</td>
<td>SME</td>
</tr>
<tr>
<td>Harness, Kyle</td>
<td>Ohmart/VEGA Corp</td>
<td>SME</td>
</tr>
<tr>
<td>Haynes, Richard</td>
<td>Conference of Radiation Control Program Directors/South Carolina</td>
<td>SME</td>
</tr>
<tr>
<td>House, William</td>
<td>Energy Solutions/Barnwell</td>
<td>SME</td>
</tr>
<tr>
<td>Joyce, Jamie</td>
<td>Department of Energy/Environmental Management</td>
<td>SME</td>
</tr>
<tr>
<td>Kroeger, Nathan</td>
<td>Rad Source Technologies, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Martin, David</td>
<td>Department of Homeland Security, Nuclear Sector-Specific Agency/Energetics Incorporated</td>
<td>NGCC</td>
</tr>
<tr>
<td>McBurney, Ruth</td>
<td>Conference of Radiation Control Program Directors</td>
<td>NGCC</td>
</tr>
<tr>
<td>Miller, John</td>
<td>International Isotopes, Inc.</td>
<td>NSCC</td>
</tr>
<tr>
<td>Natarajan, Nitin</td>
<td>Department of Health and Human Services</td>
<td>NGCC</td>
</tr>
<tr>
<td>Passetti, Bill</td>
<td>Conference of Radiation Control Program Directors-Organization of Agreement States/Florida</td>
<td>NGCC</td>
</tr>
<tr>
<td>Plapp, Brendan</td>
<td>Department of State</td>
<td>NGCC</td>
</tr>
<tr>
<td>Renquist, Cary</td>
<td>Eckert-Ziegler</td>
<td>NSCC</td>
</tr>
<tr>
<td>Ribaudo, Catherine</td>
<td>National Institutes of Health/Radiation Safety</td>
<td>NGCC</td>
</tr>
<tr>
<td>Rogers, Alice</td>
<td>Conference of Radiation Control Program Directors/Texas Department of State Health Services</td>
<td>NGCC</td>
</tr>
<tr>
<td>Roughan, Kate</td>
<td>QSA Global</td>
<td>NSCC</td>
</tr>
<tr>
<td>Schultheisz, Daniel</td>
<td>Environmental Protection Agency</td>
<td>SME</td>
</tr>
</tbody>
</table>

17. In accordance with CIPAC guidelines, participants that are not members of the NSCC or NGCC were invited to participate at Subject Matter Experts.
Sealed Source Disposal and National Security – Recommendations and Messaging Strategy

<table>
<thead>
<tr>
<th>Name</th>
<th>Agency/Organization</th>
<th>Participant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selig, Edward</td>
<td>Advocates for Responsible Disposal in Texas</td>
<td>SME</td>
</tr>
<tr>
<td>Shaffner, James</td>
<td>Nuclear Regulatory Commission</td>
<td>SME</td>
</tr>
<tr>
<td>Sommerville, Jim</td>
<td>State of Georgia</td>
<td>SME</td>
</tr>
<tr>
<td>Storton, John (Jack)</td>
<td>Babcock & Wilcox</td>
<td>SME</td>
</tr>
<tr>
<td>Surovi, Scott</td>
<td>Covidien</td>
<td>NSCC</td>
</tr>
<tr>
<td>Swain, Patricia</td>
<td>Nuclear Regulatory Commission, Federal & State Materials & Environmental Management Programs</td>
<td>NGCC</td>
</tr>
<tr>
<td>Tonkay, Doug</td>
<td>Department of Energy/Environmental Management</td>
<td>SME</td>
</tr>
<tr>
<td>Vanags, Uldis</td>
<td>State of Vermont</td>
<td>SME</td>
</tr>
<tr>
<td>Williams, Jim</td>
<td>Department of Transportation</td>
<td>SME</td>
</tr>
<tr>
<td>Whitworth, Julia</td>
<td>Los Alamos National Laboratory/NNSA</td>
<td>SME</td>
</tr>
<tr>
<td>Wiza, Jerry</td>
<td>RAM Services, Inc.</td>
<td>SME</td>
</tr>
<tr>
<td>Zarling, John</td>
<td>Los Alamos National Laboratory/NNSA</td>
<td>SME</td>
</tr>
</tbody>
</table>
Appendix B – Disposition or Disposal of Cesium-Chloride Radioactive Sealed Sources

Cesium-137/chloride (cesium-chloride) radioactive sealed sources have a number of medical applications that provide needed benefits to society. Cesium-chloride is particularly useful in blood irradiation and several other critical medical procedures. However, concerns about the widespread use of highly dispersible forms in certain devices led the Interagency Task Force for Radiation Source Protection and Security to recommend in its 2006 report that a 2-year study should be made to evaluate the feasibility of phasing out cesium chloride in a highly dispersible form. The working group assigned with fulfilling this recommendation judged that an immediate phase-out would not be feasible but that a gradual, stepwise phase-out could be feasible. The working group also examined the domestic use of cesium-chloride, the potential alternatives to cesium-chloride, and the challenges associated with transportation and disposal of cesium-chloride. The working group proposed a set of recommendations for a path forward on phase-out of dispersible forms of cesium-chloride.

In addition, the Nuclear Regulatory Commission (NRC) staff reported to the NRC Commission on this topic in late 2008. The staff recommended and the Commission agreed that no action to eliminate the use of cesium-chloride was appropriate at this time but directed the staff to continue to work with Federal partners “to encourage further technological developments for alternative forms of cesium-137.” One of the aspects that the Commission asked the staff to consider with its federal partners was the disposition of such sources at the end of life. Given the charter and composition of the Removal and Disposition of Disused Sources Focus Group, NRC staff thought it appropriate to engage the Removal and Disposition of Disused Sources Focus Group members in assisting the staff in addressing this charge.

Most category 1 and 2 cesium-chloride sources would be classified as Greater-Than-Class C waste in accordance with 10 CFR Part 61, depending on concentration averaging, and therefore disposal will ultimately be the responsibility of the U.S. Department of Energy. If a decision is made to curtail the use of cesium-chloride sources, there would likely be an impact on the cesium-chloride waste stream as these sources are retired at an accelerated rate (depending on how the phase-out is administered). Currently, there are over 1,000 Category 1 and 2 source devices in use domestically.

Even without a phase-out of cesium-chloride, the immediate challenge remains: there are limited disposal options for cesium-chloride sources that have exceeded their useful life and are currently unwanted. The Global Threat Reduction Initiative (GTRI) Off-Site Recovery Program (OSRP) may recover cesium-chloride sources that present public health and safety or national security concerns, but such recoveries would be subject to GTRI’s recovery criteria and prioritization as well as budgetary and logistical constraints, such as the availability of the appropriate radioactive material transport packaging. There may also be an opportunity to permanently dispose of a small subset of these sources that are in states that comprise the Northwest or Rocky Mountain Low-Level Radioactive Waste Compacts. The host disposal facility for these compacts, located near Richland, WA, has waste acceptance criteria based on container size that allows a higher upper activity limit for Class C waste than that of the other commercial disposal facilities. Thus, some cesium-chloride sources in those compacts may be eligible for disposal at the Richland facility.
Appendix C: Background Information on the Closure of Barnwell

The *Report of the South Carolina Nuclear Waste Task Force* provides a summary of the history and policy surrounding the closure of Barnwell. Following the enactment of the *1980 Low-Level Radioactive Waste Policy Act* ("1980 LLRW Policy Act"), South Carolina advocated the formation of a Southeast compact region that corresponded to the size and configuration of the region that had been envisioned when the state first supported the proposed Barnwell facility 10 years earlier. The original Southeast Compact language enacted by South Carolina and the other Southeast Compact states in 1982 spelled out a process for selecting another compact state to eventually replace South Carolina as the host state for the region’s disposal facility. This language was later revised to provide that, “in no event shall (the Barnwell facility) serve as a regional facility beyond December 31, 1992.”

The *1980 LLRW Policy Act* stated that compacts ratified by Congress could begin excluding waste from outside their respective borders beginning on January 1, 1986. However, because it had taken so long to negotiate compact provisions acceptable to all of the party states in the various compact regions, it became clear that there would not be time for compacts without disposal sites to establish new disposal facilities by 1986. In April 1985, following extensive discussions among state and compact officials, congressional staff, and nuclear utilities, a compromise was proposed under which the states already sited to host a facility would agree to extend access through 1992, and the non-sited states would have to meet site development milestones and pay disposal surcharges over and above the regular disposal fees.

In 1986, North Carolina was designated by the Southeast Compact Commission to succeed South Carolina as host state for the Southeast Compact regional disposal facility. However, by 1991 it was clear that the new facility would not be ready by December 31, 1992, and South Carolina enacted legislation extending the role of the Barnwell facility as the regional disposal facility for the Southeast region through December 31, 1995. The law also granted conditional access to non-regional generators through June 1994.

In June 1995, frustrated by the delays in the development of a disposal facility in North Carolina, and the Southeast Compact Commission’s unwillingness to sanction North Carolina, South Carolina Governor David Beasley proposed legislation to withdraw from the Southeast Compact and to make the Barnwell facility available to waste generators in all states except North Carolina. In June 1995, the South Carolina General Assembly enacted the legislation. In promoting the new policy, Governor Beasley estimated that the new tax would raise $140 million a year for the state. However, for a variety of reasons, actual revenues from low-level radioactive waste disposal in South Carolina fell short of that estimate. In an Executive Order dated June 10, 1999 South Carolina Governor Jim Hodges established the South Carolina Nuclear Waste Task Force in order “to provide to the people of South Carolina and the South Carolina General Assembly with a road map to discontinuance of South Carolina’s role as the nation’s nuclear dumping ground; and to recommend actions to ensure that future needs of South Carolina low-level waste generators are met.”

In December 1999, the South Carolina Nuclear Waste Task Force adopted a resolution that recommended the Governor enter into negotiations with the Atlantic Compact (which at the time consisted of Connecticut and New Jersey) to define the terms and conditions for South Carolina’s membership in the Compact. The Task Force Report recommended that “such an agreement should . . . give the state a legal means to accept waste from only three states, instead of continuing to open the disposal site to every state in the nation.”24 The resolution noted that “if waste volumes received at the Barnwell facility continue at current levels, South Carolina’s nuclear power reactors will have no place to dispose of their waste when they decommission in thirty years.”25

The South Carolina Task Force Report did not specifically address the subset of waste comprised of radioactive sealed sources and was not asked to consider the safety or security implications of the decision on the states that would lose access to commercial disposal with the closure of Barnwell to out-of-compact waste.

On May 5, 2008, EnergySolutions filed a lawsuit that, among other things, challenges the authority of the Northwest Compact to govern the company’s Low-Level Radioactive Waste (LLRW) disposal facility in Clive, Utah. The lawsuit was initiated after the company filed an application with the U.S. Nuclear Regulatory Commission to import up to 20,000 tons of potentially contaminated material from Italy and to return for export to generators in Italy any of the imported waste that can not be recycled or does not meet the Clive facility’s waste acceptance criteria for disposal. The State of Utah and the Northwest Compact oppose the application, with the compact maintaining that its current resolution and order authorizing the Clive facility to dispose of LLRW from other compacts and unaffiliated states does not apply to foreign-generated waste.

On May 15, 2009, the U.S. District Court for the District of Utah, Central Division, issued a ruling which held, among other things, that with regard to the importation of LLRW from outside of the compact region, the Northwest Compact does not have the authority to restrict access to the Clive disposal facility. The court based this ruling on its finding that Clive is a private facility operating in interstate commerce that is not covered by the compact system—i.e., it is not a “regional disposal facility” as defined under federal law. The court further ruled, however, that the Northwest Compact has authority to regulate the disposal of LLRW that is generated within the compact’s regional boundaries—including restricting disposal access for such waste to the Clive facility. Finally, the court’s ruling maintains the authority of the Northwest Compact to regulate the Richland facility operated by American Ecology—regardless of the origin of waste that is sent thereto. The court’s decision is currently under appeal.
(This page intentionally left blank)